[GAP Forum] special bijective maps on right loops
Chris Wensley
c.d.wensley at bangor.ac.uk
Tue Jul 14 21:22:42 BST 2015
Dear Akhilesh Yadav
This is not an attempt to answer your question, but just a comment on the terminology.
Groupoids in GAP are categories in which every morphism is invertible (see package Gpd). The term 'groupoid' has also been used in mathematics to denote a set with a binary operation. Such structures in GAP use the other commonly used term, namely 'magma'.
Best wishes, Chris Wensley
________________________________________
From: forum-bounces at gap-system.org <forum-bounces at gap-system.org> on behalf of Akhilesh Yadav <akhileshyadav538 at gmail.com>
Sent: 14 July 2015 17:49
To: forum at gap-system.org
Subject: [GAP Forum] special bijective maps on right loops
I asked a question on gap forum for calculating some special maps. But I
realized that it was not properly written. So I apologize to you.
I am again asking the same question:
A groupoid (S, o) with identity e is called a right loop if for every $x, y
$ in S, the equation $Xox = y$ has a unique solution in S.
A right loop $(S, o)$ is called a right loop with unique inverses if for
each x in S there exists a unique element $x^{\prime}$ (we call inverse of
x) in S such that $x o x^{\prime} = e = x^{\prime} o x$.
Suppose that (S, o) is a right loop with unique inverses. Then our
question is:
How to calculate bijective maps f on right loop S such that f(e)= e and
$f(x o y) = [f(x^{\prime})]^{\prime} o f(y)$ ?
_______________________________________________
Forum mailing list
Forum at mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum
Rhif Elusen Gofrestredig 1141565 - Registered Charity No. 1141565
Gall y neges e-bost hon, ac unrhyw atodiadau a anfonwyd gyda hi, gynnwys deunydd cyfrinachol ac wedi eu bwriadu i'w defnyddio'n unig gan y sawl y cawsant eu cyfeirio ato (atynt). Os ydych wedi derbyn y neges e-bost hon trwy gamgymeriad, rhowch wybod i'r anfonwr ar unwaith a dilewch y neges. Os na fwriadwyd anfon y neges atoch chi, rhaid i chi beidio a defnyddio, cadw neu ddatgelu unrhyw wybodaeth a gynhwysir ynddi. Mae unrhyw farn neu safbwynt yn eiddo i'r sawl a'i hanfonodd yn unig ac nid yw o anghenraid yn cynrychioli barn Prifysgol Bangor. Nid yw Prifysgol Bangor yn gwarantu bod y neges e-bost hon neu unrhyw atodiadau yn rhydd rhag firysau neu 100% yn ddiogel. Oni bai fod hyn wedi ei ddatgan yn uniongyrchol yn nhestun yr e-bost, nid bwriad y neges e-bost hon yw ffurfio contract rhwymol - mae rhestr o lofnodwyr awdurdodedig ar gael o Swyddfa Cyllid Prifysgol Bangor.
This email and any attachments may contain confidential material and is solely for the use of the intended recipient(s). If you have received this email in error, please notify the sender immediately and delete this email. If you are not the intended recipient(s), you must not use, retain or disclose any information contained in this email. Any views or opinions are solely those of the sender and do not necessarily represent those of Bangor University. Bangor University does not guarantee that this email or any attachments are free from viruses or 100% secure. Unless expressly stated in the body of the text of the email, this email is not intended to form a binding contract - a list of authorised signatories is available from the Bangor University Finance Office.
More information about the Forum
mailing list