[GAP Forum] Partitions and orbits of automorphism groups
Sven Reichard
Sven.Reichard at tu-dresden.de
Thu Jul 11 08:51:46 BST 2013
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Am 11.07.2013 09:22, schrieb Ebrahim Ghorbani:
> Dear Forum,
>
> I have a partition of the vertex set of a vertex-transitive graph
> G. I guess that this partition are the orbit partition of some
> subgroup of Aut(G). Is there any way to find out this?
>
> Thanks, Ebrahim
>
> _______________________________________________ Forum mailing list
> Forum at mail.gap-system.org
> http://mail.gap-system.org/mailman/listinfo/forum
>
Dear Ebrahim,
say the partition is P. If it is the orbit partition of some group of
automorphisms, then in particular it is the orbit partition of its own
stabilizer in the full group Aut(G). Thus, if P is given as a set of
sets, we can simply test as follows:
gap> stab := Stabilizer(Aut(G), P, OnSetsSets);
gap> Length(P) = Length(Orbits(stab, [1..G.order]));
(We just compare the lengths so we don't have to sort the orbits.)
Hope this helps,
Sven.
- --
Sven Reichard
Institut für Algebra
TU Dresden
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.5 (GNU/Linux)
Comment: Using GnuPG with Thunderbird - http://www.enigmail.net/
iQEVAwUBUd5kEmFjB3Gki4XVAQKPaAf/YlogMdZlgQ1H5rntibCFa/x/xLrTPVF7
994ml4dZEHsORWftMpbbXeeCux5APUCaoTc0hKdU1vZx7wJYcUjwqCF8L5HW96vm
LsP1CNfDmDFKiXSrGN9bTp0DrGhNNf4ALrGeivz2wl6NKssvhLeeYMr2hW/ljySe
OS3P6diNj6pgErbMhCAPi51S7z7Mg4ross2VsS6udzSIjGVSQrT75cqDtDpxWRDl
adB5ljderR8lj2Vr9w5YqtFvOLxLjqdZGIDT+wdlB8IPmTZAYFEj6CN9DbSAKVVw
wp0yQ858tVJ12bXSrQLR1gWtflBQS6Tml3nglWS82FsC/RKl5WWfsg==
=xRcS
-----END PGP SIGNATURE-----
More information about the Forum
mailing list