[GAP Forum] Problem with computing

Яков Кононов yashakon at mail.ru
Thu Apr 18 19:52:30 BST 2013


 Hello!

I want to compute the abelianization
of the kernel of the map F->G,
where F is finitely presented group
with generators  a_1, ..., a_10 and relations
a_1^2=...=a_10^2=e, a_1*a_2*a_3*a_4*a_5=a_6*a_7*a_8*a_9*a_10=e,
G is abelian group (Z/2)^4 with basis e_1,...,e_4.
The map is given by images
a_1->e_1,
a_2->e_2,
a_3->e_3,
a_4->e_4,
a_5->e_1*e_2*e*3*e_4,
a_6->e_2*e_3*e_4,
a_7->e_1*e_3*e_4,
a_8->e_1*e_3,
a_9->e_2*e_4,
a_10->e_3*e_4.

 I realize it by the following code:

f:=FreeGroup(10);
F:=f/[f.1^2,f.2^2,f.3^2,f.4^2,f.5^2,f.6^2,f.7^2,f.8^2,f.9^f,f.10^2,f.1*f.2*f.3*f.4*f.5,f.6*f.8*f.8*f.9*f.10];
G:=Group((1,2),(3,4),(5,6),(7,8));
hom:=GroupHomomorphismByImages(F,G,[F.1,F.2,F.3,F.4,F.5,F.6,F.7,F.8,F.9,F.10],[(1,2),(3,4),(5,6),(7,8),(1,2)(3,4)(5,6)(7,8),(3,4)(5,6)(7,8),(1,2)(5,6)(7,8),(1,2)(5,6),(3,4)(7,8),(5,6)(7,8)]);
iso:=IsomorphismFpGroup(Kernel(hom));
h:=Range(iso);
comm:=CommutatorFactorGroup(h);
Order(comm);
 

But it says, that the order is infinity, but it is
obviously impossible, because it is finitely
generated subgroup by elements of order
2.

Thank you,
Yakov Kononov. 


More information about the Forum mailing list