[GAP Forum] Problem with computing
Яков Кононов
yashakon at mail.ru
Thu Apr 18 19:52:30 BST 2013
Hello!
I want to compute the abelianization
of the kernel of the map F->G,
where F is finitely presented group
with generators a_1, ..., a_10 and relations
a_1^2=...=a_10^2=e, a_1*a_2*a_3*a_4*a_5=a_6*a_7*a_8*a_9*a_10=e,
G is abelian group (Z/2)^4 with basis e_1,...,e_4.
The map is given by images
a_1->e_1,
a_2->e_2,
a_3->e_3,
a_4->e_4,
a_5->e_1*e_2*e*3*e_4,
a_6->e_2*e_3*e_4,
a_7->e_1*e_3*e_4,
a_8->e_1*e_3,
a_9->e_2*e_4,
a_10->e_3*e_4.
I realize it by the following code:
f:=FreeGroup(10);
F:=f/[f.1^2,f.2^2,f.3^2,f.4^2,f.5^2,f.6^2,f.7^2,f.8^2,f.9^f,f.10^2,f.1*f.2*f.3*f.4*f.5,f.6*f.8*f.8*f.9*f.10];
G:=Group((1,2),(3,4),(5,6),(7,8));
hom:=GroupHomomorphismByImages(F,G,[F.1,F.2,F.3,F.4,F.5,F.6,F.7,F.8,F.9,F.10],[(1,2),(3,4),(5,6),(7,8),(1,2)(3,4)(5,6)(7,8),(3,4)(5,6)(7,8),(1,2)(5,6)(7,8),(1,2)(5,6),(3,4)(7,8),(5,6)(7,8)]);
iso:=IsomorphismFpGroup(Kernel(hom));
h:=Range(iso);
comm:=CommutatorFactorGroup(h);
Order(comm);
But it says, that the order is infinity, but it is
obviously impossible, because it is finitely
generated subgroup by elements of order
2.
Thank you,
Yakov Kononov.
More information about the Forum
mailing list