[GAP Forum] semidirect products

Walter Becker w_becker at hotmail.com
Sat Jun 9 18:52:08 BST 2012


Moshtagh:
 
The presentation for the group Z_9 semi Z_3 is 
 
a^9=b^3=a^b*a^-4=1;
 
More generally this class of groups [ C_(p^2}] Semi C_p
 
is 
 
      a^(p^2}=b^p=a^b*a^(-p-1) =1
 
Is this sufficient or did you need a permutation representation?
 
Walter Becker
 

> Date: Sat, 9 Jun 2012 15:50:19 +0430
> From: hs.moshtagh at gmail.com
> To: forum at gap-system.org
> Subject: Re: [GAP Forum] semidirect products
> 
> Dear Forum,
> 
> How to construct a group semidirect product of $Z_3$ and $Z_9$ where $Z_i$
> is a cyclic group of order $i$.
> I nead the permutation representation of this group.
> 
> Best,
> Moshtagh
> _______________________________________________
> Forum mailing list
> Forum at mail.gap-system.org
> http://mail.gap-system.org/mailman/listinfo/forum
 		 	   		  


More information about the Forum mailing list