[GAP Forum] Question
Sandeep Murthy
sandeepr.murthy at gmail.com
Tue May 8 10:37:36 BST 2012
Hi,
I think you mean the semidirect product G = (C_2)^3 \rtimes C_7.
If so, then the following code:
N := DirectProduct( CyclicGroup( 2 ), CyclicGroup( 2 ), CyclicGroup( 2 ) );
A := AutomorphismGroup( N );
a := Filtered( Elements( A ), x -> Order( x ) = 7 )[1];
C7 := CyclicGroup( 7 );
c := C7.1;
hom := GroupHomomorphismByImages( C7, A, [c], [a] );
G := SemidirectProduct( C7, hom, N );
should construct the group. To check this is the right group
StructureDescription( G ); IdSmallGroup( G );
should display
"(C2 x C2 x C2) : C7"
[ 56, 11 ]
Sincerely, Sandeep.
On 8 May 2012, at 03:45, Ashkan Ramiz wrote:
> Dear forum, I would like to know how we can build the group G=2^3:7 in gap.
> Best wishes,
> Ashkan
> _______________________________________________
> Forum mailing list
> Forum at mail.gap-system.org
> http://mail.gap-system.org/mailman/listinfo/forum
More information about the Forum
mailing list