[GAP Forum] The function DirectProduct
mike newman
mnewman at uottawa.ca
Wed Dec 14 21:08:58 GMT 2011
On Wed, 14 Dec 2011, Luy®n Lê Vån wrote:
>
> When I ran the below code lines:
> gap >S:=SymmetricGroup(3);;
> gap >G:=DirectProduct(S);;
> gap >G=S;
> true
>
> gap >C:=CyclicGroup(3);;
> gap >G:=DirectProduct(C);;
> gap >G=C;
> false
The issue is that "equal" and "isomorphic" are not the same thing for
groups (among other structures). In fact in GAP there is also the
notion of "identical", but that doesn't apply to your example.
So identical==>equal==>isomorphic, but the converses are false.
For your example:
gap> S:=SymmetricGroup(3);
Sym( [ 1 .. 3 ] )
gap> G:=DirectProduct(S);
Group([ (1,2,3), (1,2) ])
gap> G=S;
true
gap> IsomorphismGroups(G,S);
[ (1,2,3), (1,2) ] -> [ (1,2,3), (1,2) ]
gap> C:=CyclicGroup(3);
<pc group of size 3 with 1 generators>
gap> G:=DirectProduct(C);
<pc group of size 3 with 1 generators>
gap> G=C;
false
gap> IsomorphismGroups(G,C);
[ f1 ] -> [ f1 ]
gap> S=C;
false
gap> IsomorphismGroups(S,C);
fail
--mike
More information about the Forum
mailing list