[GAP Forum] Using repsn package on A5

krishna mohan trebauchet1986 at yahoo.co.in
Sun Oct 10 13:29:01 BST 2010


Hi....

I do the following:

gap> g:=AllSmallGroups(60)[5];
Group([ (1,2,3,4,5), (1,2,3) ])

gap> StructureDescription(g);
"A5"

gap> LoadPackage("repsn");
true

gap> chi:=Irr(g);;

gap> rep1:=IrreducibleAffordingRepresentation(chi[4]);
[ (1,2)(3,4), (1,4)(2,3), (1,3)(4,5) ] -> 
[ [ [ E(3), -1/2*E(3)^2, -1/2*E(3)+1/2*E(3)^2, 1/2*E(3)^2 ], [ 1, -E(3), E(3)^2, 
-E(3)^2 ], [ E(3), 1/2*E(3), 1/2*E(3)^2, -1/2*E(3) ], 

      [ E(3), -E(3)-1/2*E(3)^2, -3/2*E(3)-1/2*E(3)^2, -1/2*E(3)^2 ] ], 
  [ [ E(3)^2, 1/2*E(3), E(3)-1/2*E(3)^2, -1/2*E(3) ], [ 0, -1/2*E(3), 
-E(3)-1/2*E(3)^2, -1/2*E(3)-E(3)^2 ], 

      [ E(3)^2, -1/2*E(3)^2, 1/2*E(3)-1/2*E(3)^2, 1/2*E(3)^2 ], [ 1, 
-E(3)-1/2*E(3)^2, -1/2, -1/2*E(3)^2 ] ], 

  [ [ 1, -1/2*E(3)+1/2*E(3)^2, 1/2*E(3)+E(3)^2, 1/2*E(3)-1/2*E(3)^2 ], [ 0, -1, 
-1, -E(3) ], [ 0, 0, 0, E(3) ], [ 0, 0, E(3)^2, 0 ] ] ]

gap> rep2:=IrreducibleAffordingRepresentation(chi[4]);
[ (1,2)(3,4), (1,4)(2,3), (1,3)(4,5) ] -> 
[ [ [ 1/2*E(3), -1/2*E(3)-E(3)^2, E(3)^2, 1/2*E(3)^2 ], [ 0, -E(3)^2, E(3)^2, 
E(3) ], [ E(3)+1/2*E(3)^2, -3/2*E(3)^2, E(3)^2, 1/2*E(3)-1/2*E(3)^2 ], 

      [ 1/2*E(3)-1/2*E(3)^2, -1/2*E(3)+1/2*E(3)^2, 0, -1/2*E(3) ] ], 
  [ [ -1/2, 1/2, E(3), -1/2*E(3)-E(3)^2 ], [ 1/2*E(3)+E(3)^2, 1/2*E(3), 1, 
-1/2*E(3)^2 ], [ 1/2*E(3)+E(3)^2, -1/2*E(3)-E(3)^2, 0, -1/2*E(3)^2 ], 

      [ -1/2*E(3)-E(3)^2, -3/2*E(3), E(3), -E(3)-1/2*E(3)^2 ] ], 
  [ [ -1/2*E(3), 1/2*E(3)+E(3)^2, 0, E(3)+1/2*E(3)^2 ], [ 1/2*E(3), -1/2*E(3), 
E(3), -1/2*E(3)^2 ], [ -1/2*E(3)^2, -E(3)+1/2*E(3)^2, E(3), 1/2 ], 

      [ E(3)^2, -1, 1, 0 ] ] ]


As one can see, the representation matrices are different in the two instances. 
I tried this with a couple of other groups, but always got the same 
representation matrices.

On going through the repsn manual, it seemed to me that this must be due to the 
fact that A5 is not solvable.

So, if the group is solvable, then does the program always give the same 
representation matrices?
Or is it that the matrices generated may be different for different trials even 
for a solvable group?

Krishnamohan P




More information about the Forum mailing list