[GAP Forum] semisimple algebra invariant subspace decomposition
mim_ at op.pl
mim_ at op.pl
Mon Dec 17 09:21:38 GMT 2007
Hi R.N.,
I do not know why your code returns error. I have rewritten it in following way and it returned:
[ 3, 13, 15, 17 ] A*V=V 8
[ 4, 6, 8, 21 ] A*V=V 8
[ 7, 9, 11, 20 ] A*V=V 8
I have marked my changes with #MM
Regards,
Marek
------------------
Test2:=function()local E8,bE8,e,f,F4,D4,bF4,bD4,vD4,T,TT,V,M,t;
# define E8, DefaultField([ER(2),ER(3)]) necessary to find an F4
E8:=SimpleLieAlgebra("E",8,DefaultField([ER(2),ER(3)]));
F:=DefaultField([ER(2),ER(3)]); # MM
bE8:=ChevalleyBasis(E8);
e:=bE8[1]{[8,7,6,5,4,3,1,2]};
f:=bE8[2]{[8,7,6,5,4,3,1,2]};
# define F4 subalgebra of E8
F4:=Subalgebra(E8,[e[8],e[5],(e[4]+e[6])/ER(2),(e[3]+e[7])/ER(2),f[8],f[5],(f[4]+f[6])/ER(2),(f[3]+f[7])/ER(2)]);
Print(SemiSimpleType(F4),"\n");
bF4:=ChevalleyBasis(F4);
# D4 subalgebra in F4 generated by long roots
T:=[1,2,5,10,12,14,16,18,19,22,23,24];
vD4:=Concatenation(bF4[1]{T},bF4[2]{T},bF4[3]);
D4:=Subalgebra(F4,vD4);
Print(SemiSimpleType(D4),"\n");
#short roots
TT:=Difference([1..24],T);
#look for 8 dimensional subspaces spanned by short roots, heuristic
for t in Combinations(TT,4) do
V:=Concatenation(bF4[1]{t},bF4[2]{t});
bb:=MutableBasis(F, V); # MM
M:=List(vD4,x->List(V,y->IsContainedInSpan(bb,x*y))); #MM
if(not(false in Flat(M)))then Print(t," A*V=V ",Length(V),"\n");fi; #MM
od;
end;
More information about the Forum
mailing list