[GAP Forum] Automorphism Group as Permutation group on Conj.Classes

Laurent Bartholdi laurent.bartholdi at gmail.com
Wed Jun 27 18:24:56 BST 2007


Dear Giulio,
I can't comment on GAP3, which I'm too young to have used :), but with
GAP4 the following gives you a permutation action:

gap> G:=SmallGroup(12,1);
<pc group of size 12 with 3 generators>
gap> AutG:=AutomorphismGroup(G);
<group of size 12 with 3 generators>
gap> C:=ConjugacyClasses(G);
[ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G, f2*f3^G ]
gap> Action(AutG,C,function(pnt,g)
>             return ConjugacyClass(G,Representative(pnt)^g); end);
Group([ (), (2,5), () ])

Action() takes a group, a set, and a function which describes the
action of an element of the group on an element of the set. The
function I put here takes a conjugacy class, picks a representative,
acts on it, and re-constructs a conjugacyclass.

Best, L
-- 
Laurent Bartholdi          \  laurent.bartholdi<at>gmail<dot>com
EPFL SB SMA IMB MAD         \    Téléphone: +41 21-6935458
Station 8                    \ Secrétaire: +41 21-6935471
CH-1015 Lausanne, Switzerland \      Fax: +41 21-6930339



More information about the Forum mailing list