[GAP Forum] Ikosaeder group
Thomas Breuer
thomas.breuer at math.rwth-aachen.de
Mon May 8 08:42:09 BST 2006
Dear GAP Forum,
Rudolf Zlabinger wrote
> I dealt with the finite rotation group for the ikosaeder.
>
> My task was to find a permutation group acting on the 12 vertices of
> ikosaeder recognizing a special numbering of the vertices as such: look at
> the ikosaeder from a top vertex, numbered as 1, then on the 2 x 5 vertices
> forming 2 somehow parallel cycles numbered by 2,3,4,5,6 and 7,8,9,10,11,
> followed by the bottom vertex numbered by 12. Thus the permutation group
> looked for should contain the rotation around the axis 1,12 executed by the
> permutation
> (2,3,4,5,6)(7,8,9,10,11).
>
> Unfortunately the representative isomorphism Groups of symmetric group 12
> itself did not contain the desired rotation, so I had to look for a
> conjugate group of them containing it. I for the first glance found no
> direct method for doing that, so I used the following sequence:
> [...]
Perhaps the most explicit way to deal with the symmetries of a regular
icosahedron is to start from a three dimensional model for it.
Following the description on p. 2 of the Atlas Of Finite groups,
the vertices have the coordinates $(0, \pm b, \pm 1)^C$
where $b = ( 1 + \sqrt{5} ) / 2$ and the superscript $C$ denotes cyclic
permutation of the coordinates.
In GAP,
we can write down symmetries of the isosahedron by the following matrices.
b:= -E(5)^2-E(5)^3;
mat1:= [ [ 0, 1, 0 ], # permutation of coordinates
[ 0, 0, 1 ],
[ 1, 0, 0 ] ];;
mat2:= 1/2 * [ [ b-1, 1, -b ], # order 5 rotation
[ -1, b, b-1 ],
[ b, b-1, 1 ] ];;
The permutation action on the twelve vertices can be obtained as follows.
p1:= [ 0, b, 1 ]; # one vertex
g:= Group( mat1, mat2 );
vertices:= Set( Orbit( g, p1 ) );
act:= Action( g, vertices );
And now one can play with the groups.
IsPrimitive( g, vertices ); # no
bl:= Blocks( g, vertices );;
bl[1]; # opposite vertices form a block
act2:= Action( g, bl, OnSets ); # an action on six points
All the best,
Thomas
P.S.:
Here is a LaTeX picture of the icosahedron.
\documentclass{article}
\usepackage{epic}
\begin{document}
\setlength\unitlength{0.4mm}
\begin{picture}(200,220)(-50,-100)
\thicklines
% foreground
\begin{drawjoin}
% outer circle
\jput(57,-72){} % P_1
\jput(91,13){} % P_7
\jput(34.5,85){} % P_9
\jput(-57,72){} % P_3
\jput(-91,-13){} % P_5
\jput(-34.5,-85){} % P_{11}
\jput(57,-72){} % P_1
% inner circles
\jput(57,7.5){} % P_2
\jput(34.5,85){} % P_9
\jput(-34.5,45){} % P_{10}
\jput(-91,-13){} % P_5
\jput(-21,-52){} % P_6
\jput(57,-72){} % P_1
\end{drawjoin}
\begin{drawjoin}
\jput(-21,-52){} % P_6
\jput(57,7.5){} % P_2
\jput(-34.5,45){} % P_{10}
\jput(-21,-52){} % P_6
\end{drawjoin}
% remaining lines
\drawline(-21,-52)(-34.5,-85) % P_6 to P_{11}
\drawline(57,7.5)(91,13) % P_2 to P_7
\drawline(-34.5,45)(-57,72) % P_{10} to P_3
% background
\begin{dottedjoin}{3}
% inner circles
\jput( 34.5, -45){} % P_{12}
\jput( 91, 13){} % P_7
\jput( 21, 52){} % P_8
\jput( -57, 72){} % P_3
\jput( -57,-7.5){} % P_4
\jput(-34.5, -85){} % P_{11}
\jput( 34.5, -45){} % P_{12}
\jput( 21, 52){} % P_8
\jput( -57,-7.5){} % P_4
\jput( 34.5, -45){} % P_{12}
\jput( 57, -72){} % P_1
\end{dottedjoin}
% remaining lines
\dottedline{3}(-91,-13)(-57,-7.5) % P_5 to P_4
\dottedline{3}(21,52)(34.5,85) % P_8 to P_9
\end{picture}\ \begin{picture}(200,220)(-50,-100)
\thicklines
% axes
\drawline(-87,-50)(87,50)
\put(-92,-55){\makebox(0,0){$x$}}
\put(-87,-50){\vector(-2,-1){0}}
\drawline(-87,50)(87,-50)
\put(92,-55){\makebox(0,0){$y$}}
\put(87,-50){\vector(2,-1){0}}
\put(0,-100){\vector(0,1){200}}
\put(0,105){\makebox(0,0){$z$}}
% circles at points
\put( 57, -72){\circle{3}}
\put( 57, 7.5){\circle{3}}
\put( -57, 72){\circle{3}}
\put( -57,-7.5){\circle{3}}
\put( -91, -13){\circle{3}}
\put( -21, -52){\circle{3}}
\put( 91, 13){\circle{3}}
\put( 21, 52){\circle{3}}
\put( 34.5, 85){\circle{3}}
\put(-34.5, 45){\circle{3}}
\put(-34.5, -85){\circle{3}}
\put( 34.5, -45){\circle{3}}
% point names
\put( 64, -79){\makebox(0,0){$1$}}
\put( 64, 12.5){\makebox(0,0){$2$}}
\put( -64, 79){\makebox(0,0){$3$}}
\put( -64,-12.5){\makebox(0,0){$4$}}
\put( -98, -14){\makebox(0,0){$5$}}
\put( -20, -60){\makebox(0,0){$6$}}
\put( 98, 14){\makebox(0,0){$7$}}
\put( 20, 60){\makebox(0,0){$8$}}
\put( 41.5, 91){\makebox(0,0){$9$}}
\put(-43.5, 47){\makebox(0,0){$10$}}
\put(-41.5, -91){\makebox(0,0){$11$}}
\put( 43.5, -47){\makebox(0,0){$12$}}
% join points in a plane
\begin{dottedjoin}{3}
\jput(-91,-13){} % P_5
\jput(-21,-52){} % P_6
\jput(91,13){} % P_7
\jput(21,52){} % P_8
\jput(-91,-13){} % P_5
\end{dottedjoin}
\begin{dottedjoin}{3}
\jput(57,-72){} % P_1
\jput(57,7.5){} % P_2
\jput(-57,72){} % P_3
\jput(-57,-7.5){} % P_4
\jput(57,-72){} % P_1
\end{dottedjoin}
\begin{dottedjoin}{3}
\jput(34.5,85){} % P_9
\jput(-34.5,45){} % P_{10}
\jput(-34.5,-85){} % P_{11}
\jput(34.5,-45){} % P_{12}
\jput(34.5,85){} % P_9
\end{dottedjoin}
\end{picture}
\end{document}
More information about the Forum
mailing list