[GAP Forum] An Equation over a finite field involving one of the
primitive elements.
Frank Luebeck
frank.luebeck at math.rwth-aachen.de
Thu Jan 6 16:09:27 GMT 2005
On Sat, 1 Jan 2005, Bulutoglu Dursun A Civ AFIT/ENC wrote:
>> x^r-A((p^n-1)/4)x+A((p^n-1)/4)-1=0 where 0=<r=<p^n-1 and
>> A is a non-zero constant in GF(p^n).
>>
>>
> Is c=A((p^n-1)/4) a constant, so you are trying to solve x^r-c*x+c-1=0
> in GF(p^n)?
>
> That is right. I should have stated the problem like that as A can be
> any constant. Sorry about that.
> So now the problem is: If x is a primitive element in GF(p^n) it can not
> solve an equation of the form x^r-c*x+c-1=0 in GF(p^n) for any non-zero
> constant c.
Dear Dursun,
This statement is not true. Try the following in GAP:
x := Z(3^2);
Order(x);
c := Z(3^2)^3;
x^7 - c*x + c-1;
You could use GAP for checking such statements in some examples. Here
the function
findexample := function(p, n)
local y, primelts, z, i, r, c, pol, test;
y := Indeterminate(GF(p^n), 1);
primelts := Filtered(GF(p^n), x-> Order(x)=p^n-1);;
for r in [0..p^n-1] do
z := Z(p^n);
for i in [0..p^n-2] do
c := z^i;
pol := y^r - c*y +(c-1);
test := Filtered(primelts, a-> IsZero(Value(pol, a)));
if Length(test) > 0 then
Print("r=",r," c=",c," #solutions=",Length(test),
"(",test,")\n");
fi;
od;
od;
end;
gives you plenty of further counterexamples to your statement.
Best regards,
Frank
/// Dr. Frank Lübeck, Lehrstuhl D für Mathematik, Templergraben 64, ///
\\\ 52062 Aachen, Germany \\\
/// E-mail: Frank.Luebeck at Math.RWTH-Aachen.De ///
\\\ WWW: http://www.math.rwth-aachen.de/~Frank.Luebeck/ \\\
-------------- next part --------------
More information about the Forum
mailing list