[GAP Forum] Time to compute Size(semigroup)
Jose Joao Morais
jjoao at netcabo.pt
Tue Jan 27 11:08:24 GMT 2004
Dear GAP Forum,
I have a semigroup of transformations S1. Then I do
gap> Size(S1);
39536
and this is what I got with DisplayProfile()
gap> DisplayProfile();
count self/ms chld/ms function
39537 10 -10 UnderlyingCollection: system getter
39537 30 0 UnderlyingCollection
39543 50 0 ADD_LIST
276739 260 20 EQ: for two transformations of the same set
237221 620 -10 Enumerator: for a collection that is a list
39530 1420 700 AddSet: for mutable internally represented
list, and object
39530 80 2110 AddSet
3950033 5680 -220 LT: <trans> < <trans>
237216 6040 1040 PROD: trans * trans
237216 3370 5280 IN: for an object, and a small list
39537 1060 18050 ISB_LIST: for a right semigroup ideal
enumerator
790742 480 18710 Size: for a list that is a collection
1 0 19190 Size: for a collection
3 0 19190 Order: for a group
1 60 19130 LENGTH: for a semigroup ideal enumerator
19190 TOTAL
For another semigroup S2, which is a semidirect product semigroup,
whose elements are Tuples, I did
gap> Size(S2);
1764
after clearing the Profile information I got these times
gap> DisplayProfile();
count self/ms chld/ms function
165128* 9060 -430 UnderlyingCollection: system getter
165128* 18000 9280 UnderlyingCollection
8863493 9230 120 EQ: for two transformations of the same set
425088 680 570 AddSet
1627094 1920 -50 LT: <trans> < <trans>
127008 2180 340 PROD: trans * trans
63504 670 4270 IN: for an object, and a small list
165128* 53310 97690 ISB_LIST: for a right semigroup ideal
enumerator
171496* 9570 141430 Size: for a list that is a collection
1 0 151000 Size: for a collection
4 0 151000 Order: for a group
1 0 151000 LENGTH: for a semigroup ideal enumerator
(Total 104620)
63504 10 40 SemiDirectProductSemigroupElmAction: system
getter
127008 50 20 Enumerator: system getter
127008 100 -30 IsSingleValued
127010 100 0 FamilySource: system getter
127008 100 10 IsTotal
127013 130 20 Enumerator: for a collection that is a list
127010 120 50 Tester(FamilySource)
63504 190 0 SemiDirectProductSemigroupElmAction
127008 170 30 Source: for default general mapping
127009 180 50 Enumerator
127010 180 90 FamilySource
65301 140 160 EQ: for two pairs
127008 110 210 PreImagesRange: for total general mapping
(delegate to `Source')
508330 190 140 EQ: for two families: delegate to
`IsIdenticalObj'
63540 450 50 Setter(SemiDirectProductSemigroupElmAction):
system setter
425088 500 0 AddSet: for mutable internally represented
list, and object
63540 80 500 Setter(SemiDirectProductSemigroupElmAction)
63540 830 60 Setter(IsSemiDirectProductSemigroupElm)
127008 2040 1740 ImageElm: for mapping by function
127008 140 3790 ImageElm
667623 2250 1720 LT: for two pairs
8255520 13190 45140 ELM_LIST: for a right semigroup ideal
enumerator
127008 22500 111250 IN: for a semigroup ideal emunerator
127008 370 133980 IN: for a domain, and an element
63504 2260 143390 PROD: for two elements of a semidirect
product semigroup
151000 TOTAL
I wonder if anyone could give me an hint on why the times for the
common methods between these two results are so much higher in the case
of S2.
Thank you,
Jose Morais
More information about the Forum
mailing list