> < ^ Date: Thu, 09 Jun 1994 16:27:00 +0200
> < ^ From: Peter F. Mueller <Peter.Mueller@IWR.Uni-Heidelberg.De >
> ^ Subject: Weird message

Dear Gap-forum,

using the most recent version of GAP (under UNIX), the program below
yields, after some successful runs even over the innermost
`for'-loops, the following message I don't understand what it comes
from and what it is supposed to tell me.
By the way, I found no smaller group than the Mathieu group M_24
producing this phenomenon.

Peter
----------------------------------------------------------------
OrbRep:=function(g,s)
   return List(Orbits(g,s),x->x[1]);
end;
g:=PrimitiveGroup(24,3);# M24
cg:=Filtered(ConjugacyClasses(g),x->Size(x)>1 and
    not IsAbelian(Centralizer(g,Representative(x))));
Sort(cg,function(v,w) return Size(v)>Size(w);end);
Print(g,"\n");
for ca in cg do
   a:=Representative(ca);
   ca:=Centralizer(g,a);
   cca:=Filtered(ConjugacyClasses(ca),x->Size(x)>1 and not
        IsAbelian(Centralizer(g,Representative(x))));
   Sort(cca,function(v,w) return Size(v)>Size(w);end);
   for cclass in cca do
      c:=Representative(cclass);
      if not c in Subgroup(g,[a]) then
         for d in Difference(OrbRep(Centralizer(ca,c),Elements(cclass)),
                             Subgroup(g,[a,c])) do
            if c*d*c=d*c*d then
               h3:=Subgroup(g,[a,c,d]);
               for b in Difference(OrbRep(Centralizer(g,h3),
                        Elements(ConjugacyClass(Centralizer(g,d),a))),h3) do
                  if a*b*a=b*a*b and b*c*b*c=c*b*c*b then
                     h:=Subgroup(g,[a,b,c,d]);
                     Print(Order(g,a)," ",Order(g,c)," ",Size(h),"\n");
                  fi;
               od;
            fi;
         od;
      fi;
   od;
od;
----------------------------------------------------------------
gap> Read("F4");
M(24)
7 2 1008
7 2 1008
5 3 720
... (many lines deleted)
3 3 576
3 4 288
3 2 72
Error, Record: element 'fusingElement' must have an assigned value at
fusingElement := power.fusingElement
  ^ (Size( power.galoisGroup ) / (sizeKnownPart * div[i])) ... in
CompleteGaloisGroupPElement( G, rationalClasses[j],
 rationalClasses[j].powers[p], p ) called from
RationalClassesPElements( G, p ) called from
RationalClassesPermGroup( G ) called from
G.operations.RationalClasses( G ) called from
RationalClasses( G ) called from
...
brk> quit;
gap> quit;

> < [top]