>>>"Hulpke" == Alexander Hulpke <hulpke@math.colostate.edu> writes:
Hulpke> However (as also noted) now GAP 4.2 will stop with an
Hulpke> error message (``No method found'') that indicates that
Hulpke> the capability to test invertibility of a matrix in this
Hulpke> ring has not been implemented.
Except that GAP does seem to be able to decide invertibility:
gap> R := Integers mod 9; (Integers mod 9) gap> S := FullMatrixAlgebra(R,2); ( (Integers mod 9)^[ 2, 2 ] ) gap> one := Identity(R); zero := Zero(R); ZmodnZObj( 1, 9 ) ZmodnZObj( 0, 9 ) gap> x := [[one,one],[zero,one]]; [ [ ZmodnZObj( 1, 9 ), ZmodnZObj( 1, 9 ) ], [ ZmodnZObj( 0, 9 ), ZmodnZObj( 1, 9 ) ] ] gap> IsUnit(S,x); true
And one can even generate SL(2,Z/9Z):
gap> y := [[one,zero],[one,one]]; [ [ ZmodnZObj( 1, 9 ), ZmodnZObj( 0, 9 ) ], [ ZmodnZObj( 1, 9 ), ZmodnZObj( 1, 9 ) ] ] gap> Order(Group(x,y)); 648 gap> 3*4*2*27; 648
It seems like the group just mentioned must be constructed
as a subgroup of Units(S). (??)
[Sorry if I'm creating too much noise on this list...]
All the best,
George
-- __O | George McNinch <mcninch.1@nd.edu> _-\<,_ | www.nd.edu/~gmcninch (_)/ (_) | Dept. Math, Univ. Notre Dame