Dear GAP Forum,
The list of primitive maximal subgroups of A_n and S_n that I sent a
few days ago contained four errors. Thanks to Joachim Neubueser and
Alexander Hulpke for noticing these!
The corrections are:
#17 should be [ [5], [8], [8] ] not [ [5], [4,8], [8] ], #19 should be [ [6], [5], [] ] not [ [6], [5], [1] ], #31 should be [ [8], [7,9,10], [9,10] ] not [ [8], [9,10], [9,10] ], #49 should be [ [34,38], [32,37], [] ] not [ [34,38], [32,36], [] ],
The full corrected list follows.
For 1 <= n <= 50, maxprim[n][1] is the list of those r for which
PrimitiveGroup(n,r) is maximal in SymmetricGroup(n), but NOTE THAT THIS DOES
NOT INCLUDE AlternatingGroup(n), so you have to add that in separately.
maxprim[n][2] is the list of r for which PrimitiveGroup(n,r) is maximal in
AlternatingGroup(n) and maxprim[n][3] is the subset of maxprim[n][2]
consisting of those that split into two conjugacy classes in the alternating
group.
maxprim := [ [ [], [], [] ], # 1 [ [], [], [] ], # 2 [ [], [], [] ], # 3 [ [], [], [] ], # 4 [ [3], [2], [] ], # 5 [ [2], [1], [] ], # 6 [ [4], [5], [5] ], # 7 [ [4], [5], [5] ], # 8 [ [7], [6,9], [9] ], # 9 [ [7], [6], [] ], # 10 [ [4], [6], [6] ], # 11 [ [2], [4], [4] ], # 12 [ [6], [5,7], [7] ], # 13 [ [2], [1], [] ], # 14 [ [], [4], [4] ], # 15 [ [], [20], [20] ], # 16 [ [5], [8], [8] ], # 17 [ [2], [1], [] ], # 18 [ [6], [5], [] ], # 19 [ [2], [1], [] ], # 20 [ [1,3,7], [2,6], [] ], # 21 [ [2], [1], [] ], # 22 [ [4], [5], [5] ], # 23 [ [2], [3], [3] ], # 24 [ [23,26], [21,24], [] ], # 25 [ [5], [2], [] ], # 26 [ [13], [11,12], [11] ], # 27 [ [11], [9,12], [12] ], # 28 [ [6], [5], [] ], # 29 [ [2], [1], [] ], # 30 [ [8], [7,9,10], [9,10] ], # 31 [ [4], [3,5], [5] ], # 32 [ [], [2], [2] ], # 33 [ [], [], [] ], # 34 [ [], [4], [4] ], # 35 [ [16,19], [14,20], [20] ], # 36 [ [9], [8], [] ], # 37 [ [2], [1], [] ], # 38 [ [], [], [] ], # 39 [ [4,6], [2,5], [] ], # 40 [ [8], [7], [] ], # 41 [ [2], [1], [] ], # 42 [ [8], [7], [] ], # 43 [ [2], [1], [] ], # 44 [ [5], [4,7], [7] ], # 45 [ [], [], [] ], # 46 [ [4], [3], [] ], # 47 [ [2], [1], [] ], # 48 [ [34,38], [32,37], [] ], # 49 [ [6], [2,7], [7] ] # 50 ];
Derek Holt.