I would like computing the rank of K/[K,K] where K is the kernel of a morphisme \psi defined as follow :
un:=Z(7)^0; zero:=0*Z(7); gk1:=[[1,1],[0,1]]; gk2:=[[1,0],[-E(3),1]]; gi1:=[[un, un], [zero, un]]; gi2:=[[un, zero], [2*un, un]]; GammaK:=Group([[1,1],[0,1]], [[1,0],[-E(3),1]]); GammaI:=Group(gi1,gi2);psi:=GroupHomomorphismByImages(GammaK,GammaI,
GammaK.generators,GammaI.generators);
Does a trick exist to avoid the instruction kernel(psi) ?