Trying to add subgroup lattice into my PermGroup page
(http://wims.unice.fr/~wims/en_tool~algebra~permgroup.en.phtml), I got
the following output from GAP which I am unable to interprete.
-------------------------------------------- gap> g:=SmallGroup(18,3); <pc group of size 18 with 3 generators> gap> l:=LatticeSubgroups(g); LatticeSubgroups(Group( [ f1, f2, f3 ] ),# 9 classes, 14 subgroups) gap> c:=List(ConjugacyClassesSubgroups(g),Representative); [ Group([ ]), Group([ f3 ]), Group([ f2 ]), Group([ f2*f3 ]), Group([ f2, f3 ]), Group([ f2, f3, f1 ]), Group([ f1 ]), Group([ f1, f3 ]), Group([ f1, f2 ]) ] gap> List(c,Size); [ 1, 3, 3, 3, 9, 18, 2, 6, 6 ] gap> MaximalSubgroupsLattice(l); [ [ ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 4, 1 ], [ 4, 2 ], [ 3, 1 ], [ 2, 1 ] ], [ [ 5, 1 ] ], [ [ 1, 1 ] ], [ [ 7, 1 ], [ 7, 2 ], [ 7, 3 ], [ 2, 1 ] ], [ [ 8, 1 ], [ 6, 1 ] ] ] gap> --------------------------------------------
The output seems to tell that the class #6, or order 6, has class #6
which is the whole group, as a maximal subgroup. What is wrong?
-- XIAO Gang (~{P$8U~}) xiao@unice.fr http://pcmath126.unice.fr/xiao.html
Miles-Receive-Header: reply