Dear GAP-Forum,
Pat Callahan wrote in his e-mail
> GAP-forum,
> Is there a simple way to create a list of how many elements of each
order
> there are for a given group? Thanks,
> Pat Callahan
Here is quick solution :-)
# Order distribution of a group (for Pat Callahan)
# Sebastian Egner, 15.11.96, GAP v3.4
#F OrderDistributionGroup( <group> )
#F returns the distribution of the orders of the elements of
#F <group> as a sorted list of pairs [<order>, <frequency>].
#F (The function uses ConjugacyClasses.)
#F
OrderDistributionGroup := function ( G )
local cs, cs1, i;
cs := List( ConjugacyClasses(G), C -> [ Order(G, Representative(C)), Size(C) ] );
Sort(cs); cs1 := [ cs[1] ]; for i in [2..Length(cs)] do if cs[i][1] = cs1[Length(cs1)][1] then cs1[Length(cs1)][2] := cs1[Length(cs1)][2] + cs[i][2]; else Add(cs1, cs[i]); fi; od; return cs1; end; - - - Sebastian Egner Institut für Algorithmen und Kognitive Systeme Universität Karlsruhe Am Fasanengarten 5 D-76128 Karlsruhe Tel. +49 721 608 4304 / +49 721 96400 14 Fax. +49 721 69 68 93 e-mail egner@informatik.uni-karlsruhe.de